Decay Bounds for Functions of Hermitian Matrices with Banded or Kronecker Structure

نویسندگان

  • Michele Benzi
  • Valeria Simoncini
چکیده

We present decay bounds for a broad class of Hermitian matrix functions where the matrix argument is banded or a Kronecker sum of banded matrices. Besides being significantly tighter than previous estimates, the new bounds closely capture the actual (non-monotonic) decay behavior of the entries of functions of matrices with Kronecker sum structure. We also discuss extensions to more general sparse matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay Bounds for Functions of Matrices with Banded or Kronecker Structure

We present decay bounds for a broad class of Hermitian matrix functions where the matrix argument is banded or a Kronecker sum of banded matrices. Besides being significantly tighter than previous estimates, the new bounds closely capture the actual (non-monotonic) decay behavior of the entries of functions of matrices with Kronecker sum structure. We also discuss extensions to more general spa...

متن کامل

Bounds for the decay of the entries in inverses and Cauchy–Stieltjes functions of sparse, normal matrices

It is known that in many functions of banded, and more generally, sparse Hermitian positive definite matrices, the entries exhibit a rapid decay away from the sparsity pattern. This is in particular true for the inverse, and based on results for the inverse, bounds for Cauchy–Stieltjes functions of Hermitian positive definite matrices have recently been obtained. We add to the known results by ...

متن کامل

On the finite section method for computing exponentials of doubly-infinite skew-Hermitian matrices

Computing the exponential of large-scale skew-Hermitian matrices or parts thereof is frequently required in applications. In this work, we consider the task of extracting finite diagonal blocks from a doubly-infinite skew-Hermitian matrix. These matrices usually have unbounded entries which impede the application of many classical techniques from approximation theory. We analyze the decay prope...

متن کامل

DECAY BOUNDS AND O(n) ALGORITHMS FOR APPROXIMATING FUNCTIONS OF SPARSE MATRICES

We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n×n diagonalizable matrix and f is smooth on a subset of the complex plane containing the spectrum of A. Combined with techniques from approximation theory, the bounds are used to compute sparse (or banded) approximations to f(A), resulting in algorithms that under appropriate conditions have linear c...

متن کامل

Cayley Transform and the Kronecker Product of Hermitian Matrices

We consider the conditions under which the Cayley transform of the Kronecker product of two Hermitian matrices can be again presented as a Kronecker product of two matrices and, if so, if it is a product of the Cayley transforms of the two Hermitian matrices. 2010 Math. Subj. Class.: 15A69, 15B57.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015